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Abstract 

The pressing need for building resilient and sustainable civil infrastructure systems requires 

optimal design of infrastructure components which are not only capable to perform adequately 

under service loads but also resilient enough to survive under loads from man-made and natural 

extreme events. This report focuses on a component of seismic fragility analysis of bridge 

foundations – load-displacement behavior of piles under dynamic lateral loading. Winkler (soil-

spring) models are widely used to capture pile-soil interaction under lateral loading. However, 

such simplified foundation-soil interaction model cannot predict ‘true’ serviceability and limit 

conditions. Consequently, a high level of conservatism is employed in such analyses, and 

therefore simplified soil spring models cannot be relied upon in the assessment of reliability (or 

vulnerability) of bridge foundations under dynamic loading.  

In order to effectively capture different possible damage conditions in foundations and their 

complex interaction with structures, a continuum-based analytical framework is explored in this 

study to investigate behavior of single piles under dynamic lateral loading. The governing 

differential equations for the pile-soil system are derived by using Hamilton’s principle. The soil 

displacement field is assumed to be consistent with two facts: (i) soil displacement decreases as 

the distance from the pile increases and (ii) in addition to the radial distance from pile, soil 

displacement at any point depends on the direction of the load with respect to that point. Because 

of the interdependency between pile deflection and soil displacement, an iterative solution 

scheme is adopted. The adopted analysis framework shows promise to eliminate the need for 

computationally expensive numerical analyses (e.g., 3D finite element analysis). It is anticipated 

that future research based on the work presented in this report will facilitate generation of pile 

fragility curves that can provide probabilistic estimation of foundation vulnerability under 

dynamic loading. 
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Introduction 

Piles are often used as foundation elements for structures subjected to both axial and lateral 

loads. In situations when structures are exposed to high lateral load demands (such as due to 

machine vibrations, seismic motions, extreme wind load, sea waves, to name a few) response of 

pile foundations under static and/or dynamic lateral load should be critically investigated to 

avoid any catastrophic structural failure initiated by the failure of foundations. 

Over the last few decades, different analytical and numerical approaches have been adapted 

to model and analyze pile-soil interaction and dynamic response of pile foundations. Winkler 

spring-based models are the simplest among all available models. In such models, soil 

continuum and piles are, respectively, approximated as discretely-spaced and interconnected 

springs. In some variations of such discrete modeling approach, dashpots are also connected to 

one or more pile segments. The spring and dashpot constants are either back-calculated from 

experimental data or directly fed in to the models based on analytical considerations and 

judgement. The Novak model (Novak  1974) and the Matlock model (Matlock et al. 1978) are 

known as the conventional Winkler models that are frequently used in dynamic response analysis 

of pile foundations. The Nogami model (Nogami et al. 1988; 1991) is another variation of 

spring-based model that can account for nonlinear pile-soil interaction under dynamic loading. 

Other researchers also attempted to account for nonlinearity and inhomogeneity in the soil 

continuum, pile-soil separation and hysteretic degradation of soil through modified versions of 

Winkler model. For example, El Naggar and Bentley (2000) and Maheshwari and Watanaba 

(2006) used nonlinear springs to take into account the gapping at the soil-pile interface. 

Numerical simplicity and the ease of implementation are among the top advantages of Winkler 

models; however, such models are not capable of (i) considering shear transfer within soil (i.e., 

shear interaction between two adjacent layers of soil) and (2) capturing the three-dimensional 

interaction between the pile and the soil. Such shortcomings of Winkler models can be overcome 

by using continuum-based methods. 

Continuum-based approaches for analyzing pile-soil interaction under lateral loading can 

broadly be divided into two categories: using numerical techniques (e.g., finite element, finite 

difference) and using analytical or semi-analytical techniques. Finite element method has 

extensively been used by researchers for analysis of laterally loaded piles (Kuhlemar 1979, 

Krishna et al. 1983, Velez et al. 1983). In finite element analyses of piles under dynamic lateral 
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loading, the far field is represented by energy-absorbing boundaries. More advanced finite 

element analyses consider the effects of soil plasticity and separation at pile-soil interface on 

dynamic lateral response of piles (e.g. Bentley and El Naggar 2000, and Maheshwari et al. 2004). 

In spite of their superior capability in analyzing soil-pile interaction, three-dimensional 

numerical analyses are computationally expensive for routine practices. Therefore, analytical or 

semi-analytical methods are more appealing. 

Considering the soil surrounding the pile as a linear elastic continuum, Das et al. 1999 

developed analytical solutions to obtain lateral pile deflection along the length of the pile. 

However, they assumed the same decreasing trend of soil displacement in both the radial and 

tangential directions with the increase of distance from the pile. In case of single pile under static 

lateral loading, Basu et al. 2009 indicated that the consideration of the same decreasing trend of 

soil displacement in both radial and tangential directions would result in a soil response stiffer 

than that is in reality. 

The present study explores a continuum-based, semi-analytical framework for dynamic 

analysis of laterally loaded single piles. Pile and soil displacements under simultaneous actions 

of dynamic lateral load F(t) and moment M(t) are quantified as a function of depth and time. The 

analytical formulation is based on the facts that soil displacement decreases as the distance from 

the pile increases and displacement at any point in the soil surrounding the pile depends on the 

direction of applied load with respect to the point of interest. Hamilton’s principle is utilized in 

deriving the governing differential equations that describe pile and soil displacements. 

Appropriate boundary conditions are enforced to obtain simultaneous solution for pile and soil 

displacements. For a specific case of steady state harmonic loading, closed-form solution is 

obtained for pile deflection. Soil displacement fields are evaluated using one-dimensional finite 

difference technique.  

Problem definition 

We consider a circular pile with length Lp and radius rp embedded in a semi-infinite, 

homogeneous, isotropic soil deposit. The pile head is subjected to a time dependent lateral force 

F(t), and a time dependent moment M(t), such that F(t) and M(t) are orthogonal vectors (Fig. 1). 

The cylindrical coordinate system (r, , z) is employed with its origin at the center of the pile 
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head and the positive z axis (which coincides with the pile axis) pointing downwards. Specific 

assumptions made in the present analysis are: 

i. constitutive behavior of soil is elastic with shear modulus Gs and Lame’s constant λs 

ii. the pile is vertical and it behaves as an Euler-Bernouli beam with a constant flexural 

rigidity EpIp throughout its length; Ep and Ip are, respectively, the Young’s modulus of 

pile material and second moment of inertia for pile cross section 

iii. the pile is perfectly connected to the soil; i.e. there is no separation or slippage at the pile 

and soil interface 

iv. vertical displacement of the pile under the lateral load and moment is negligible. 

v. time-dependent pile displacement is a function of depth z only; i.e., displacement at every 

point on a pile cross section at depth z is constant  

 

Figure 1 Problem geometry – single pile under dynamic lateral loading 

Displacement and strain fields 

Displacement of any point at depth z within the ground is assumed to be a function of radial pile 

displacement w(z, t) at the same depth (Fig. 2). Dimensionless displacement shape functions 

ϕ୰ሺrሻ and ϕ஘ሺrሻ are used to account for the decay in soil displacement with increase in radial 

distance away from the pile. ϕ୰ሺrሻ and ϕ஘ሺrሻ are equal to 1 at r ൌ r୮(compatibility at pile and 

soil interface) and are equal to 0 at r → 	∞ . For the domain below the pile (i.e., for z ൐ L୮), 
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w(z, t) is the displacement of the soil column, with radius rp and extending infinitely below the 

pile. Displacement components at any point within the soil domain are expressed as: 

 u୰ሺr, θ, z, tሻ ൌ wሺz, tሻϕ୰ሺrሻ cos θ   (1a) 

 u஘ሺr, θ, z, tሻ ൌ െwሺz, tሻϕ஘ሺrሻ sin θ (1b) 

 u୸ሺz, t, r, θሻ ൌ 0 (1c) 

 

Figure 2 Soil displacement components at a point within the ground 

The strain components at any point within the ground are derived following the displacement 

components described in equation (1). 
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Governing differential equations 

The governing differential equations for pile deflection and soil displacement are obtained 

following the Hamilton’s principle for deformable bodies. Mathematically,  

׬  ሺδW୬ୡ ൅ δT െ δUሻdt ൌ 0
୲మ
୲భ

 (3) 

where Wnc is work done by non-conservative forces,  T and U are respectively, kinetic and 

potential energy associated with the pile-soil system. The operator  is used to signify variation 

of a physical quantity. The potential energy U of the pile and soil system is given by: 

 U ൌ ଵ

ଶ
׬ E୮I୮ ቀ

பమ୵

ப୸మ
ቁ
ଶ୐

଴
dz ൅ ଵ

ଶ
׬ ׬ ׬ ሺσ୰୰ε୰୰ ൅

୐౦
଴

ଶ஠

଴

ஶ

୰౦
σ஘஘ε஘஘ ൅ τ୰஘γ୰஘ ൅ τ୰୸γ୰୸ ൅

τ஘୸γ஘୸ሻr	dr	dθ	dz ൅
ଵ

ଶ
׬ ׬ ׬ ሺσ୰୰ε୰୰ ൅

ஶ

୐౦

ଶ஠

଴

ஶ

଴
σ஘஘ε஘஘ ൅ τ୰஘γ୰஘ ൅ τ୰୸γ୰୸ ൅

τ஘୸γ஘୸ሻr	dr	dθ	dz (4) 

Combining equations (2) and (4), the potential energy of the pile-soil system can be rewritten as: 

 U ൌ ଵ

ଶ
E୮I୮ ׬ ሺப

మ୵

ப୸మ
ሻଶ

୐

଴
dz ൅	஠

ଶ
׬ ׬ ሼሺλୱ ൅ 2Gୱሻwଶ ቀୢம౨

ୢ୰
ቁ
ଶ
൅ 2λୱwଶ ୢம౨
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൅
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୰
൅ Gୱሺ

ୢ୵

ୢ୸
ሻଶϕ୰

ଶ ൅

Gୱሺ
ୢ୵

ୢ୸
ሻଶϕ஘

ଶሽr	dr	dz ൅ ஠

ଶ
r୮ଶ ׬	 Gୱሺ

ୢ୵

ୢ୸
ሻଶdz

ஶ

୐౦
 (5) 

The kinetic energy T of the pile and soil system is: 

 T ൌ ଵ

ଶ
׬ ρ୮A୮ሺ

ப୵

ப୲
ሻଶdz

୐౦
଴
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׬ ρୱA୮ሺ

ப୵

ப୲
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ஶ

଴
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ଶ஠

଴

ቀப୳ಐ
ப୲
ቁ
ଶ
ൠ rdz	dr	dθ (6) 

where ρ୮and ρୱ are density of the pile materials and soil, respectively, and A୮is cross section 

area of the pile. Using equation (1) in (6), kinetic energy T for the pile-soil system can be 

rewritten as: 
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 T ൌ ଵ

ଶ
ρ୮A୮ ׬ ሺப୵

ப୲
ሻଶdz

୐౦
଴

൅ ଵ

ଶ
ρୱA୮ ׬ ሺப୵

ப୲
ሻଶdz

ஶ

୐౦
൅ ஠

ଶ
ρୱ ׬ ׬ ሼሺப୵

ப୲
ሻଶϕr

ଶஶ

୰౦

ஶ

଴
൅

ሺப୵
ப୲
ሻଶϕθ

ଶሽ	rdrdz (7) 

Now, the work done by the non-conservative forces in variational form can be expressed as: 

W୬ୡߜ  ൌ െFሺtሻ. δwሺ0, tሻ ൅ Mሺtሻ பஔ୵
ሺ଴,୲ሻ

ப୸
൅ ׬ c ப୵

ப୲
δw	dz

ஶ

଴
 (8) 

where, c represents damping of the pile-soil system. Combining equations (3), (5), (7), and (8) 

and applying principles of variational calculus: 

׬  ሺδW୬ୡ ൅ δT െ δUሻdt ൌ ׬ ሼሾAሺwሻδw ൅ Bሺwሻδ ቀୢ୵
ୢ୸
ቁሿ

୲మ
୲భ

൅ ሾC൫ϕr൯δϕrሿ ൅
୲మ
୲భ

ሾDሺϕθሻδϕθሿሽdt	 ൌ 0 (9) 

The terms associated with each of the variations δw, δ ቀୢ୵
ୢ୸
ቁ, δϕ୰, and δϕ஘	must individually be 

equal to zero to satisfy equation (9). This exercise yields the governing differential equations and 

boundary conditions needed for solving w(z,t), ϕ୰ሺrሻ, and ϕ஘ሺrሻ.	 

Collecting the coefficients of δw and δ ቀୢ୵
ୢ୸
ቁ	for the domains 0 ൑ z ൑ L୮ and L୮ ൑ z and 

equating each to zero yields the differential equations and boundary conditions that govern the 

radial deflections of the pile and the soil column (extending infinitely) below the pile. 

 Differential equations 

 E୮I୮
பర୵

ப୸ర
െ 2τ ப

మ୵

ப୸మ
൅ kw ൅Mଵ

பమ୵

ப୲మ
൅ c ப୵

ப୲
ൌ 0  for 0 ൑ z ൑ L୮ (10) 

 െ2τୱ
பమ୵

ப୸మ
൅ kw ൅Mଶ

பమ୵

ப୲మ
൅ c ப୵

ப୲
ൌ 0  for z ൒ L୮ (11) 

 Boundary conditions 

At the ground surface (i.e. 	z ൌ 0 ): 

 E୮I୮
பయ୵

ப୸య
െ 2τ ப୵

ப୸
ൌ F (12a) 
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 E୮I୮
பమ୵

ப୸మ
ൌ M (12b) 

At the bottom of the pile (i.e.	z ൌ L୮): 

 E୮I୮
பయ୵

ப୸య
െ 2τ ப୵

ப୸
ൌ െ2τୱ

ப୵౟౤	౩౥౟ౢ

ப୸
 (13a) 

 E୮I୮
பమ୵

ப୸మ
ൌ 0 (13b) 

Pile-soil interface at z ൌ L୮: 

 w୧୬	୮୧୪ୣ ൌ w୧୬	ୱ୭୧୪ (14a) 

At z → 	∞ (i.e., at a distance far below the pile base): 

 w ൌ 0 (14b) 

Parameters Mଵ, Mଶ, τ, τୱ, and k in equations (10) through (13) are defined as: 

 Mଵ ൌ ρ୮A୮ ൅ πρୱ ׬ r൫ϕ୰
ଶ ൅ ϕ஘

ଶ൯dr
ஶ

୰౦
 (15a) 

 Mଶ ൌ ρୱA୮ ൅ πρୱ ׬ r൫ϕ୰
ଶ ൅ ϕ஘

ଶ൯dr
ஶ

୰౦
 (15b) 

 2τ ൌ πG׬ r൫ϕ୰
ଶ ൅ ϕ஘

ଶ൯dr
ஶ

୰౦
 (15c) 

 2τୱ ൌ 2τ ൅ πGr୮ଶ (15d) 

 k ൌ πሾሺλ ൅ 2Gሻηଵ ൅ Gηଶ ൅ 2ληଷ െ 2Gηସ െ 2ληହ ൅ 2Gη଺ ൅ ሺλ ൅ 3Gሻη଻ ൅

ሺλ ൅ 3Gሻη଼ െ 2ሺλ ൅ 3Gሻηଽሿ (15e) 

The  terms in equation (15c) are functions of displacement shape functions and their 

derivatives.  
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ηଵ ൌ න ൬
dϕ୰

dr
൰
ଶஶ

୰౦

rdr ηଶ ൌ න ሺ
dϕ஘

dr
ሻଶ

ஶ

୰౦

rdr  

ηଷ ൌ න ϕ୰ሺ
dϕ୰

dr
ሻ

ஶ

୰౦

dr ηସ ൌ න ϕ஘ሺ
dϕ஘

dr

ஶ

୰౦

ሻdr  

ηହ ൌ න ϕ஘ሺ
dϕ୰

dr
ሻ

ஶ

୰౦

dr η଺ ൌ න ϕ୰ሺ
dϕ஘

dr
ሻ

ஶ

୰౦

dr (16) 

η଻ ൌ න
ϕ୰

ଶ

r

ஶ

୰౦

dr η଼ ൌ න
ϕ஘

ଶ

r

ஶ

୰౦

dr  

ηଽ ൌ න
ϕ୰ϕ஘

r

ஶ

୰౦

dr   

 

The differential equations to calculate soil displacement shape functions ϕ୰ሺrሻ and ϕ஘ሺrሻ are 

obtained by collecting the terms containing δϕ୰, and δϕ஘ and equating each to zero. The coupled 

differential equations describing ϕ୰ and ϕ஘ are: 

 
ୢమம౨
ୢ୰మ

൅ ଵ

୰

ୢம౨
ୢ୰
െ ቆቀஓభ

୰
ቁ
ଶ
൅ ൬ஓమ

୰౦
൰
ଶ

ቇϕ୰ ൌ
ஓయమ

୰

ୢமಐ
ୢ୰

െ ቀஓభ
୰
ቁ
ଶ
ϕ஘ (17) 

 
ୢమமಐ
ୢ୰మ

൅ ଵ

୰

ୢமಐ
ୢ୰

െ ቆቀஓర
୰
ቁ
ଶ
൅ ൬ஓఱ

୰౦
൰
ଶ

ቇϕ஘ ൌ െஓలమ

୰

ୢம౨
ୢ୰
െ ቀஓర

୰
ቁ
ଶ
ϕ୰ (18) 

Equations (17) and (18) are subjected to boundary conditions ϕ୰ ൌ ϕ஘ ൌ 1 at r ൌ r୮ and 

ϕ୰ ൌ ϕ஘ ൌ 1 at r → 	∞. The parameters γଵ, γଷ, γସ, and γ଺ in equations (17) and (18) are 

constants depending on soil properties and γଶand γହ	depend on w(z,t) at any given time and 

depth. These parameters are defined as: 

γଵଶ ൌ
mସ

mଵ
ൌ 1 ൅

G
λ ൅ 2G

 ሺ
γଶ
r୮
ሻ ଶ ൌ

n െ L
mଵ

  

γଷଶ ൌ
mଶ ൅mଷ

mଵ
ൌ

λ ൅ G
λ ൅ 2G

 γସଶ ൌ
mସ

mଶ
ൌ 3 ൅

λ
G

 (19) 

ቆ
γହ
r୮
ቇ
ଶ

ൌ
n െ L
mଶ

 γ଺ଶ ൌ
mଶ ൅mଷ

mଶ
ൌ 1 ൅

λ
G
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where: 

mଵ ൌ ሺλ ൅ 2Gሻන wଶ
ஶ

଴
dz mଶ ൌ Gන wଶ

ஶ

଴
  

mଷ ൌ λන wଶ
ஶ

଴
dz mସ ൌ ሺλ ൅ 3Gሻන wଶ

ஶ

଴
dz (20) 

n ൌ Gන ሺ
∂w
∂z
ሻଶ

ஶ

଴
 L ൌ ρୱ න ሺ

∂w
∂t
ሻଶ

ஶ

଴
  

    

Solution algorithm 

In order to obtain pile deflection as a function of depth and time, equation (10) should be solved. 

However, solution of equation (10) needs equation (11) to be solved first in order to satisfy 

boundary condition specified in equation (13a). Moreover, the coefficients k, M1, M2, τ and τୱ in 

equations (10) and (11) depend on ϕ୰ and ϕ஘, which are not known a priori. ϕ୰ and ϕ஘, on the 

other hand, are dependent on w(z,t) and its derivatives through the parameters γଶ and γହ (see 

equations 17, 18, and 19). Therefore, an iterative algorithm is necessary to solve the problem. 

Note that equations (17) and (18) are interdependent and should be solved simultaneously. So an 

iterative solution procedure is also warranted in order to quantify soil displacement shape 

functions. The flow chart presented in Fig. 3 shows the iterative solution steps. 
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(a) 

 

 

(b) 

Fig. 3. Solution flow chart: (a) for finding w(z,t), (b) for finding ϕ୰ሺrሻ and ϕ஘ሺrሻ 
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Solution for a specific case – undamped pile-soil system under steady state 
harmonic loading 

The analytical framework outlined in the previous sections is used to solve for a specific case of 

undamped pile-soil system (i.e., c=0) subjected to steady state harmonic loading. The harmonic 

loading functions considered for this case are: 

 Fሺtሻ ൌ F଴e୧ஐ୲ (21a) 

 Mሺtሻ ൌ M଴e୧ஐ୲ (21b) 

where Ω is the circular loading frequency and F଴ and M଴	are the amplitudes of the lateral load 

F(t) and the moment M(t), respectively. Pile and soil displacement are assumed to be in-phase 

with the loading function. Therefore, the motion of the pile and the soil column beneath it will be 

in the form of: 

 wሺz, tሻ ൌ ቊ
w୮ሺzሻe୧ஐ୲						,			0 ൑ z ൑ L୮
wୱሺzሻe୧ஐ୲						,									z	 ൒ L୮	

 (22)    

where w୮ሺzሻ is the amplitude of the pile displacement, and wୱሺzሻ is the displacement amplitude  

for the soil column just beneath the pile. Substitution of equations (21) and (22) into equations 

(10) and (11) yields: 

 Differential equations 

 E୮I୮
ୢర୵౦

ୢ୸ర
െ 2τ

ୢమ୵౦

ୢ୸మ
൅ ሺk െ MଵΩଶሻw୮ ൌ 0  for 0 ൑ z ൑ L୮ (23) 

 െ2τୱ
ୢమ୵౩

ୢ୸మ
൅ ሺk െ MଶΩଶሻwୱ ൌ 0  for z ൒ L୮ (24) 

 Boundary conditions 

 At ground surface (i.e. 	z ൌ 0 ): 

 E୮I୮
ୢయ୵౦

ୢ୸య
െ 2τ

ୢ୵౦

ୢ୸
ൌ F଴ (25a) 
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 E୮I୮
ୢమ୵౦

ୢ୸మ
ൌ M଴ (25b) 

 At pile base (i.e.	z ൌ L୮): 

 E୮I୮
ୢయ୵౦

ୢ୸య
െ 2τ

ୢ୵౦

ୢ୸
൅ 2τୱ

ୢ୵౩

ୢ୸
ൌ 0 (26a) 

 E୮I୮
ୢమ୵౦

ୢ୸మ
ൌ 0 (26b) 

 At the interface of soil and pile (i.e. z ൌ L୮): 

 wୱ ൌ w୮ (27a) 

 At a point far below the pile; i.e., for z → 	∞  

 wୱ ൌ 0 (27b) 

The solution of equation (24) with boundary conditions expressed through equations (27a) 

and (27b) is given by: 

 wୱሺzሻ ൌ w୮൫L୮൯	e
ି൫୸ି୐౦൯ට

ౡష౉మಈమ

మಜ౩ 	 (28) 

Equation (28) is used in equation (26a) to obtain the pile deflection. 

Analytical Solution for Pile Deflection 

The general solution of equation (23) can be written as: 

 w୮ሺzሻ ൌ Cଵw୮ଵ ൅ Cଶw୮ଶ ൅ Cଷw୮ଷ ൅ Cସw୮ସ (29) 

where w୮ଵ, w୮ଶ, w୮ଷ, and w୮ସ are individual solutions of the fourth order differential equation 

and Cଵ, Cଶ, Cଷ, and Cସ are integration constants. w୮ଵ, w୮ଶ, w୮ଷ, and w୮ସ are trigonometric or 

hyperbolic functions arising in the solution of linear ordinary differential equations. Finding the 

individual solutions using Table 1, and then applying the boundary conditions specified in 
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equations (25) and(26) into equation (29), the integration constants, Cଵ, Cଶ, Cଷ, and Cସ, can be 

determined. Equation (23) can be rearranged as: 

 
ୢర୵౦

ୢ୸ర
െ 2B

ୢమ୵౦

ୢ୸మ
൅ Aw୮ ൌ 0 (30) 

where the two parameters A and B are expressed as: 

 A ൌ ୩ି୑భஐమ

୉౦୍౦
	 (31a) 

 Bଶ ൌ ሺ த

୉౦୍౦
ሻଶ (31b) 

Based on the relative magnitude of A and B2, two cases are considered here. For each case, 

two other parameters, a and b, are defined and those are used in finding the individual solutions 

of the differential equation: 

Case 1:  A ൐ Bଶ  

ܽ ൌ ටଵ

ଶ
ሺ√A ൅ Bሻ (32a) 

b ൌ ටଵ

ଶ
ሺ√A െ Bሻ (32b) 

 

Case 1:  A ൏ Bଶ 

ܽ ൌ ඥB ൅ √Bଶ െ A (33a) 

b ൌ ඥB െ √Bଶ െ A (33b) 

The individual solutions of equation (23), represented through equation (30), and 

their derivatives are outlined in Table 1. However, soil displacement shape functions must be 

quantified first to calculate individual solutions wp1 through wp4. 
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Table 1Individual solutions for pile displacement in equation 29 

Bଶ ൏ A 

Individual 

solutions 

Functions and their derivatives 

w୮ w୮
ᇱ w୮

ᇱᇱ w୮
ᇱᇱᇱ 

w୮ଵ sinh az	cosh bz aw୮ଶ െ bw୮ସ 
ሺaଶ െ bଶሻw୮ଵ

െ 2ab w୮ଷ 

aሺaଶ െ 3bଶሻw୮ଶ 

൅bሺbଶ െ 3aଶሻw୮ସ 

w୮ଶ cosh az	cosh bz aw୮ଵ െ bw୮ଷ 
ሺaଶ െ bଶሻw୮ଶ

െ 2ab w୮ସ 

aሺaଶ െ 3bଶሻw୮ଵ 

൅bሺbଶ െ 3aଶሻw୮ଷ 

w୮ଷ cosh az	sinh bz aw୮ସ ൅ bw୮ଶ 
ሺaଶ െ bଶሻw୮ଷ

൅ 2ab w୮ଵ 

aሺaଶ െ 3bଶሻw୮ସ 

െbሺbଶ െ 3aଶሻw୮ଶ 

w୮ସ sinh az	sinh bz aw୮ଷ ൅ bw୮ଵ 
ሺaଶ െ bଶሻw୮ସ

൅ 2ab w୮ଶ 

aሺaଶ െ 3bଶሻw୮ଷ 

െbሺbଶ െ 3aଶሻw୮ଵ 

A ൏ Bଶ 

Individual 

solutions 

Functions and their derivatives 

w୮ w୮
ᇱ w୮

ᇱᇱ w୮
ᇱᇱᇱ 

w୮ଵ sinh az aw୮ଶ aଶw୮ଵ aଷw୮ଶ 

w୮ଶ cosh az aw୮ଵ aଶw୮ଶ aଷw୮ଵ 

w୮ଷ sinh bz bw୮ସ bଶw୮ଷ bଷw୮ସ 

w୮ସ cosh bz bw୮ଷ aଶw୮ସ bଷw୮ଷ 

 

Finite Difference Formulation for Soil Displacement Shape Functions 

The differential equations for ϕ୰ and ϕ஘ (equations 17 and 18) are solved numerically using 

finite difference formulation. Using the central-difference scheme, finite difference forms of 

equations (17) and (18) can be written as: 
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஍౨
ౠశభିଶம౨

ౠ ାம౨
ౠషభ

୼୰మ
൅

ଵ

୰ౠ

ம౨
ౠశభିம౨

ౠషభ

ଶ୼୰
െ ቈ൬

ஓభ
୰ౠ
൰
ଶ
൅ ൬

ஓమ
୰౦
൰
ଶ
቉ϕ୰

୨ ൌ
ஓయమ

୰ౠ

மಐ
ౠశభିமಐ

ౠషభ

ଶ୼୰
െ

൬
ஓభ
୰ౠ
൰
ଶ
ϕ஘
୨

 (34) 

 
மಐ
ౠశభିଶமಐ

ౠ ାமಐ
ౠషభ

୼୰మ
൅

ଵ

୰ౠ

மಐ
ౠశభିமಐ

ౠషభ

ଶ୼୰
െ ቈ൬

ஓర
୰ౠ
൰
ଶ
൅ ൬

ஓఱ
୰౦
൰
ଶ
቉ϕ஘

୨ ൌ െ
ஓలమ

୰ౠ

ம౨
ౠశభିம౨

ౠషభ

ଶ୼୰
െ

൬
ஓర
୰ౠ
൰
ଶ
ϕ୰
୨
 (35) 

where Δr is discretization length and j is the nodal index (Fig. 4). 

 

Figure 4 Finite difference discretization in radial direction 

Δr should be sufficiently small to maintain a satisfactory level of accuracy and the total number 

of nodes m should be sufficiently large to adequately model the infinite domain in the radial 

direction,. After applying the boundary conditions, equation (34) and (35) can be written in 

matrix form as: 

 ൣK∅౨൧
୫ൈ୫

ሾ∅୰ሿ୫ൈଵ ൌ ൣF∅౨൧
୫ൈଵ

 (36a) 

	

ൣK∅ಐ൧
୫ൈ୫

ሾ∅஘ሿ୫ൈଵ ൌ ൣF∅ಐ൧
୫ൈଵ

 (36b) 

In equation (36), ൣK∅౨൧ and ൣK∅ಐ൧ are tri-diagonal matrices with elements K୨୧
∅౨and K୨୧

∅ಐ  

rj

1 2 3 4 5 j j+1 m-1 m

∆r

j-1

1≤ j ≤m
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 K୨୧
∅౨ ൌ

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ

1																															,			i ൌ j ൌ 1	or	m
ଵ

∆୰మ
െ ଵ

ଶ୰ౠ	∆୰
																											,																											i ൌ j െ 1	 and	j ് 2

െ ଶ

∆୰మ
െ ൤൬ஓభ

୰ౠ
൰
ଶ

൅ ൬ஓమ
୰౦
൰
ଶ

൨ 	,								2 ൑ i ൌ j ൑ m െ 1

ଵ

∆୰మ
൅ ଵ

ଶ୰ౠ	∆୰
																												 , i ൌ j ൅ 1	and	j ് m െ 1

															0																														,																													others

 (37a) 

 

 K୨୧
∅ಐ ൌ

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ

1																																			,					i ൌ j ൌ 1	or	m
ଵ

∆୰మ
െ ଵ

ଶ୰ౠ	∆୰
																										,																										i ൌ j െ 1	 and	j ് 2

െ ଶ

∆୰మ
െ ൤൬ஓర

୰ౠ
൰
ଶ

൅ ൬ஓఱ
୰౦
൰
ଶ

൨ 	,							2 ൑ i ൌ j ൑ m െ 1

ଵ

∆୰మ
൅ ଵ

ଶ୰ౠ	∆୰
																														 , i ൌ j ൅ 1	and	j ് m െ 1

0																																	,															others

 (37b) 

 

and the elements of ൣF∅౨൧
୫ൈଵ

 and ൣF∅ಐ൧
୫ൈଵ

 are: 

 

 F୨
∅౨ ൌ

ە
ۖۖ
ۖ
۔

ۖۖ
ۖ
ۓ
1																																																																																					,					j ൌ 1

െ ଵ

∆୰మ
൅ ଵ

ଶ୰మ	∆୰
൅ ஓయమ

୰మ

மಐ
ሺయሻିଵ

ଶ	୼୰
െ ቀஓభ

୰మ
ቁ
ଶ
ϕ஘
ሺଶሻ										,				j ൌ 2

ஓయమ

୰ౠ

மಐ
ౠశభିமಐ

ౠషభ

ଶ	୼୰
െ ൬ஓభ

୰ౠ
൰
ଶ

ϕ஘
୨ 									,														3 ൑ j ൑ m െ 2

ஓయమ

୰ౣషభ

ିமಐ
ሺౣషమሻ

ଶ	୼୰
െ ቀ ஓభ

୰ౣషభ
ቁ
ଶ
ϕ஘
ሺ୫ିଵሻ					,																							j ൌ m െ 1

0																																																																											,									j ൌ m

 (38a) 

 F୨
∅ಐ ൌ

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ
1																																																																																		,					j ൌ 1

െ ଵ

∆୰మ
൅ ଵ

ଶ୰మ	∆୰
െ ஓలమ

୰మ

ம౨
ሺయሻିଵ

ଶ	୼୰
െ ቀஓర

୰మ
ቁ
ଶ
ϕ୰
ሺଶሻ				,					j ൌ 1

െ ஓలమ

୰ౠ

ம౨
ౠశభିம౨

ౠషభ

ଶ	୼୰
െ ൬ஓర

୰ౠ
൰
ଶ

ϕ୰
୨ 												,										3 ൑ j ൑ m െ 2

െ ஓలమ

୰ౣషభ

ିம౨
ሺౣషమሻ

ଶ	୼୰
െ ቀ ஓర

୰ౣషభ
ቁ
ଶ
ϕ୰
ሺ୫ିଵሻ					,											j ൌ m െ 1

0																																																													,												j ൌ m

 (38b) 
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Since, the right-hand side vectors ൣF∅౨൧
୫ൈଵ

 and ൣF∅ಐ൧
୫ൈଵ

 in equation (36) have elements 

containing the unknown ϕ୰ and ϕ஘, iterative procedures should be followed to obtain their 

values as illustrated in solution flowchart (Fig.3b). A MATLAB code is developed to handle the 

iterative solution procedure described herein. Note that the CPU runtime of the MATLAB code 

(run on a core-i5 processor with 8 GB RAM) is approximately 100 s for the example cases 

presented in this report. 

Results and Discussions 

The application of the developed analysis methodology is demonstrated using an example 

problem with input parameters listed in Table 2.  

 

Table 2- Input parameters used in the analysis of sample problem 

Pile Geometry 
Radius, rp (mm) 0.5 

Length, Lp (m) 5, 10, 15, 20 

Material Properties for Pile 
Modulus of Elasticity, E୮ (Gpa) 25 

Density, ρ୮ (kg/m3) 2400 

Material Properties for Soil 

Modulus of Elasticity, Eୱ (Mpa) 25 

Poisson Ratio,νୱ 0.3 

Density, ρୱ (kg/m3) 1500 

Force 
Amplitude, F0 (kN) 1000 

Circular Frequency, Ω (rad/s) 10 

 

The effects of pile length Lp and pile-to-soil stiffness ratio are also investigated. Fig. 5 shows the 

amplitude of pile deflection, ݓ௣ሺݖሻ, for different pile lengths (= 5m, 10m, 15m, and 20m). For 

pile length Lp = 5m, a rigid body rotation that signifies short-pile response under lateral loading, 

is observed. A transition behavior is observed for Lp = 10m and the pile behaves as a long-pile 

for Lp = 15 and 20m. Figure 6 shows, at some selected time instants, the variation of pile 

deflection with depth. 
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a) b) 

  

c) d) 

Fig.5. Amplitude of pile deflection along the pile length (wp(z)) 
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Fig.6. Pile Deflection at different time instants 

The bending moment and shear force at different pile cross-sections are important design 

parameters for laterally loaded piles. Figure 7 shows the variation of bending moment and shear 

force with along the length of a 10-m-long pile. The maximum bending moment occurs at a 

depth of 2 m (= Lp/10) from the pile head and the maximum shear force occurs at the pile head. 
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7(b). 

Fig.7. (a) Bending moment and (b) Shear force diagram along the pile length 

A parametric study is done to investigate the effects of parameters Lp/rp (i.e., slenderness ratio of 

the pile) and Ep/Es (i.e., pile-soil modulus ratio) on pile behavior under harmonic lateral loading. 

Figure 8 shows that lateral displacement of pile base is more sensitive to change in pile 

slenderness ratio Lp/rp when compared to pile head displacement. Both pile head and base 

displacements decreases with increase in Lp/rp; nonetheless, they become insensitive to the 

change in slenderness ratio for Lp/rp ≥ 25. 

 

Fig.8. Effect of pile slenderness ratio Lp/rp on pile head and base displacements 
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For a long pile (Lp = 25 m), the ratio Ep/Es of elastic modulus of deformation for pile and soil 

significantly affects the displacement at the pile head; pile head displacement appears to be 

linearly proportional with Ep/Es. The displacement at pile base also increases as the ratio Ep/Es 

increases ( or Es decreases); however, the relationship between these two parameters is not linear 

(Fig. 9). 

 

Fig. 9. Effect of Ep/Es on the displacement of the pile at the head and the bottom 

 

The variations of soil displacement shape functions, ϕ୰ and ϕ஘, with radial distance from the 

pile are presented in Figure 10. The slope of decay in the soil displacement shape function is 

larger in tangential direction than that in the radial direction. Figures 11 and 12 shows soil 

displacements ur and u recorded at different depths z and at different angular coordinates 

θ	ሺൌ 0, ஠
଺
, ஠
ଷ
, ஠
ଶ
) with respect to the direction of the applied force. Note that ur = u = 0 for  θ ൌ 0 

and θ ൌ ஠

ଶ
 , which directly follows the assumption of no separation between pile and soil 

surrounding it (an assumption necessary for the present analytical continuum-based approach). 

Figure 13 demonstrates the effects of radial distance and angle with respect to the direction of the 

applied load on the radial and tangential displacement at any point (for depth z = 0.5 m). 
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Fig. 10. variation of soil displacement shape functions,  ϕ୰ሺrሻ and  ϕ஘ሺrሻ 
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11(b) 

 

 

11(c) 

Fig.11.  Soil displacement in radial direction  at the angel of (a) θ ൌ 0,(b) θ ൌ ஠

଺
  , (c)	θ ൌ ஠

ଷ
 with 

respect to the direction of the applied force, at different depth, (Lp=20 m) 
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12(c) 

Fig.12. Soil displacement in tangential direction  at the angel of (a) θ ൌ ஠

଺
,(b)	θ ൌ ஠

ଷ
  , (c) θ ൌ ஠

ଶ
 

with respect to the direction of the applied force, at different depth, (Lp=20 m) 
 

 

 

13(a) 

-6

-5

-4

-3

-2

-1

0

1

1 6 11 16 21 26 31 36
So

il 
di

sp
la

ce
m

en
t i

n 
ta

ng
en

tia
l d

ir
ec

tio
n,

u ϴ
(m

m
)

Normalized distance from the pile centerline, r/rp

ϴ=П/2

z=0.5 m

z=3 m

z=8 m

z=20 m
z=25 m

F(t)

uϴ

0

1

2

3

4

5

6

1 6 11 16 21 26 31 36

S
oi

l d
is

pl
ac

em
en

t i
n 

ra
di

al
 d

ir
ec

tio
n,

 u
r

(m
m

)

Normalized distance from the pile centerline, r/rp

z=0.5 m

a

b

c

d

F(t)
a: ϴ=0
b: ϴ=П/6
c: ϴ=П/3
d: ϴ=П/2

F(t)F(t)F(t) a

b
cd



29 
 

 

 

13(b) 

Fig.13. Variation of soil displacement (for Lp=20 m and z=0.5 m) at various locations within the 
domain surrounding the pile (a) radial displacement ur and (b) tangential displacement u

 

Summary and Conclusions 

A semi-analytical continuum-based approach is developed for predicting response of a single 

pile subjected to dynamic lateral loading. Soil surrounding the pile is considered to be elastic, 

homogeneous and isotropic. A MATLAB code is developed to perform analysis following the 

proposed framework. It appears that the developed semi-analytical framework is computationally 

efficient (much so when compared to 3D FEAs). Although results show promise of the analysis 

methodology presented in this report, accuracy of such results needs further verification using 

real-lie data and/or conventional three-dimensional finite element analyses. 
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